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Abstract: The paper has as subject the modeling and forecasting of air quality impact on mortality rates, and
present a case study, making use of time series analysis approach. After a general view on the time series models,
regression and intervention models, to be used in modeling and forecasting of mortality, function of air quality,
some methodological aspects of time series modeling and forecasting, based on Box-Jenkins methodology, are
discussed with the emphasis on practical aspects. Finally, a case study using a multiplicative transfer function
model with three exogenous variable representing ozone, daily average computed for the region, particulate matter
10 micrometers or less in diameter, daily average, and temperature mean, daily average, considered as risk factors,
with the effect on mortality rate, as endogenous variable, is presented.
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1 Introduction

Air quality, weather and climate, and human health
are closely linked. These interdependencies are be-
coming ever more evident and health professionals
ever more reliant on meteorological and climate ser-
vices to help anticipate and manage the health risks
of poor air quality, [1]. Over the last century, poor
air quality has become a critical environmental, eco-
nomic, and health problem around the world as indus-
trial growth and economic development have caused
massive increases in air pollutants. The World Health
Organization (WHO) has released alarming data on
the impact of ambient (surrounding outdoor) air qual-
ity and climatic changes on human health, [2], among
other reports. For such analysis it is important to have
accurate information on the concentration-response
relationships for the effects investigated, for example
on the relationship between changes in daily air pol-
lution and its impact on health.

Air pollution is defined as a phenomenon harm-
ful to the ecological system and the normal conditions
of human existence and development when some sub-
stances in the atmosphere exceed a certain concen-
tration, with great effect on morbidity and mortality.
Nitrogen oxides, ozone, volatile organic compounds,
sulphur dioxide and particulate matter (PM) are accru-
ing in our atmosphere, especially due to inefficiencies
in transportation, energy production, energy use and

industry. Chemical components and pollutants emit-
ted into the atmosphere undergo chemical transforma-
tions and get transported far and wide, depending on
the climate and weather. As a result, air pollution
is now the worlds largest single environmental health
risk, [3].

Time series studies of particulate matter and mor-
tality and morbidity have provided evidence that daily
variation in air pollution levels is associated with daily
variation in mortality counts. These findings served
as key epidemiological evidence for the recent review
of the ambient air quality standards for particulate
matter. As a result, methodological issues concern-
ing time series analysis of the relationship between
air pollution and health have attracted the attention
of the scientific community and critics have raised
concerns about the adequacy of current model for-
mulations. Time series data on pollution and mortal-
ity are generally analyzed by using log-linear, Pois-
son regression models for overdispersed counts with
the daily number of deaths as outcome, the (possibly
lagged) daily level of pollution as a linear predictor
and smooth functions of weather variables and calen-
dar time used to adjust for time-varying confounders,
[4]

In the face of increasingly serious environmental
pollution problems, scholars have conducted a signifi-
cant quantity of related research, and in those studies,
the modeling and forecasting of their effects on mor-
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bidity and mortality have been of paramount impor-
tance. Extensive research indicates that the methods
in this field can be broadly divided in statistical fore-
casting methods, artificial intelligence methods, and
numerical forecasting methods. Also, recently, some
hybrid models have been proposed, to improve the
modeling quality and forecast accuracy. The time se-
ries modeling and forecasting have been widely used
in this field. Many studies provide a clear perspective
on air pollution, and climatic changes effects on mor-
bidity and mortality. So, [5] gives an overview of time
series ideas and methods used in public health and
biomedical research, with examples in public health
including daily ozone concentrations, weekly admis-
sions, in a health department in the U.S. The time
series models are most commonly used in regression
analysis to describe the dependence of the response
at each time on predictor variables including covari-
ances and possibly previous values in the series. In [6]
are reviewed the history, methods, and findings of the
time-series studies estimating health risks associated
with short-term exposure to particulate matter (PM),
though much of the discussion is applicable to epi-
demiological studies of air pollution in general. Time
series methods are necessary to make valid inferences
from data by accounting for the correlation among re-
peated responses over time. Estimation of health ef-
fects (morbidity and mortality) attributed to PM10 and
PM2.5 exposure using an Air Quality model in Bukan
city, from 2015-2016, is given in [7]. A multi-model
(HTAP2), to estimate the premature human mortal-
ity due to intercontinental transport of air pollution
and emission sectors, taking into account six source
regions, three global emission sectors, power and in-
dustry, ground transportation, and residential, and one
global domain, using an ensemble of global chemical
transport model simulations coordinated by the sec-
ond phase of the Task Force on Hemispheric Transport
of Air Pollutants (TF HTAP2), and epidemiologically
derived concentration response functions is given in
[8].

The present paper aims to provide a case study
on modeling and forecasting of air quality impact on
mortality rates using time series analysis, for a data
set provided by Kaggle, [9].

The paper is organized as follows. In Section II is
given a general view on the time series models, regres-
sion and intervention models, to be used in modeling
and forecasting of mortality, function of air quality.
Section III discusses some methodological aspects of
time series modeling and forecasting, based on Box-
Jenkins methodology, with the emphasis on practical
aspects. Section IV presents a case study using a mul-
tiplicative transfer function model with three exoge-
nous variable representing ozone, daily average com-

puted, particulate matter 10 micrometers or less in di-
ameter, and temperature mean, daily averaged, con-
sidered as risk factors, with the effect on mortality
rate, as endogenous variable.

2 Time series models

The statistical approaches adopted in time series
modeling and forecasting usually rely on multiplica-
tive SARIMA (Seasonal Auto Regressive Integrated
Moving Average) model. A such model has the fol-
lowing form for the time serieszt, [10]:

φ(B)Φ(Bs) ▽d ▽D
s zt = θ(B)Θ(Bs)at (1)

whereat is a white noise and

φ(B) = 1 + φ1B + φ2B
2 + · · · + φpB

p;

θ(B) = 1 + θ1B + θ2B
2 + · · · + θqB

q;

Φ(Bs) = 1 + ΦsB
s + Φ2sB

2s + . . . + ΦPsB
Ps;

Θ(Bs) = 1 + ΘsB
s + Θ2sB

2s + . . . + ΘQsB
Qs;

with B the time delay operator,Bzt = zt−1, ▽zt =
(1 − B) = zt − zt−1, nonseasonal differentiating op-
erator, and▽szt = (1 − Bs) = zt − zt−s, seasonal
differentiating operator:d is the nonseasonal differ-
entiating order,D is the seasonal differentiating order
ands is the seasonal period of the series.

The model is defined as
SARIMA(p, d, q)(P,D,Q)s where(p, d, q) denotes
nonseasonal orders, and(P,D,Q) seasonal order of
the model. The model is presented in Fig. 1.

at- θ(B)Θ(Bs)
▽dφ(B)▽DΦ(Bs)

zt-

Figure 1: MultiplicativeSARIMA model

The multiplicative form of the model simplifies
the stationarity and invertibility conditions checking;
these conditions can be separately checked, for sea-
sonal and nonseasonal coefficients of the model.

Starting from the general model form of the
modelSARIMA it can be obtain related models:AR
(Auto Regressive),MA (Moving Average),ARMA
(Auto Regressive Moving Average) andARIMA
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(Auto Regressive Integrated Moving Average), with
or without seasonal components. These models are
identified by the mean of the autocorrelation (ACF )
and the partial autocorrelation functions (PACF ).

In some situations, it is known that some external
events can affect the variables for which the practi-
tioner intends to forecast the future time series val-
ues. Dynamic models, used in this case, include sev-
eral variables, as input variables, which are intended
to take into account in the dynamics model, the men-
tioned exception events. A special kind ofSARIMA
model with input series is called an intervention model
or interrupted time series (ITS) model, [11]. In an in-
tervention model, the input series is an indicator vari-
able that contains discrete values that flag the occur-
rence of an event affecting the response series. This
event is an intervention in or an interruption of the
normal evolution of the response time series, which,
in the absence of the intervention, is usually assumed
to be a pureSARIMA process. As examples of prac-
tical interventions can be mentioned: the effect of dif-
ferent promotions activities on the sales, the effect of
strikes on the volume of the products and the price of
the products, the effect of medication on the health
of the patient, the effect of the exchange of the laws
in the legislation on the mortalities resulting from car
accidents, etc. In this case, some variables as step
function, consisting of ”zero” values and ”unit” val-
ues, before and after application respectively change
policy, medication, or exchange of laws are included
in the model, as an external variable.

A such intervention model can be represented like
a transfer function(TF ) model (see Fig. 2), wherezt

is the value of the endogenous variable at timet, ut =
[u1t, . . . , urt]

T is the vector of exogenous variables,
andat is a white noise error.

Ωi(B) = ωi0 + ωi1B + ωi2B
2 + · · · + ωini

Bni;
i = 1, 2, . . . , r

∆i(B) = 1 + δi1B + θi2B
2 + · · · + δinδi

Bnδi ;
i = 1, 2, . . . , r

φ(B), θ(B),Φ(Bs) and Θ(Bs) have been described
above.

3 Methodological Aspects

The time series model construction usually include the
following stages, [10]:

• Identification (specification) of the time series
model using some data analysis tools (different

Ωr(B)
∆r(B)
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Figure 2: Transfer function (TF ) model

graphical representations, autocorrelation func-
tions (ACF ) and partial autocorrelation func-
tions (PACF )) in order to determine the types
of transformations to obtain stationarity and to
estimate the degree of differentiation needed to
induce stationarity in data, as well as the polyno-
mial degrees of autoregressive and moving aver-
age operators in the model.

• Model parameter estimation of the time series
implies the use of efficient methods (such as
maximum likelihood, among others) for parame-
ter estimation, standard errors and their correla-
tions, dispersion of residuals, etc.

• Model evaluation (validation) aims to establish
the model suitability, or to make some simplifi-
cations in structure and parameter estimates. Key
elements for model validation refers to residuals
which can not be justified, these being any resid-
uals of abnormal value that can not be explained
by the action of known external factors or other
variables; also the correlations and partial cor-
relations of the residuals prove useful tools in
model evaluation.

More explanations of the process, e.g. [12], often
add a preliminary stage of data preparation and a final
stage of model application, or forecasting.

Visual analysis of series data allows a first image
on the series’ non-stationarity and on the presence of
a seasonal pattern in the data. The final decision on
the inclusion of seasonal elements in the time series
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model will be taken after the autocorrelation function
(ACF ) and partial autocorrelation function (PACF )
analysis, as well as after the estimation results analy-
sis; the visual analysis of the data can provide useful
additional information.

Significant changes in the mean value of the se-
ries data require non seasonal differentiation of the
first order, while the varying of the rate for average
value imposes the nonseasonal differentiation of the
second order of the series. Strong seasonal variations
usually require, not more than the seasonal differenti-
ation of the first order of the series’data. Autocorre-
lation function of the series offers information on the
nonseasonal and seasonal degrees to be used to obtain
the stationarity of the data.

An ARMA stationary process is characterized by
theoretical autocorrelation and partial autocorrelation
functions tending to zero. The autocorrelation func-
tion tends to zero after the firstq − p values of the de-
lay, following the evolution of a exponential function
or of a damped sinusoidal function, and the partial au-
tocorrelation function is canceled after the firstp − q
values of the delay, [13].

An AR or MA seasonal process is characterized
by similar autocorrelation and partial autocorrelation
functions, corresponding to nonseasonal processes,
but the coefficients of autocorrelation and partial auto-
correlation functions, significant for the seasonal pro-
cess, appear at multiple seasonal delay values.

At the stage of model identification a special at-
tention will be given to nonseasonal autocorrelation
coefficients with absolute values of the associatedt
statistic test exceeding the value 1.6, [13]. Model pa-
rameters, associated to these coefficients prove to be
significant from the statistical point of view, in the es-
timation stage.

In the identification and validation-diagnosis
stages, the attention will be focused on the coefficients
of seasonal autocorrelations with the absolute values
of the t statistic test associated which overcome 1.25
value. The seasonal parameters estimatesAR or MA
, associated to these coefficients, will appear more sig-
nificant in the estimation stage. If the residual auto-
correlation function has zeros values, from statistical
point of view, to seasonal delays:s, 2s, . . . , and to the
delays of the form0.5s, 1.5s, and in the vicinity of
seasonal delays:s + 1, s − 1, 2s + 1, 2s − 1, . . . , the
same warning level will be used: 1.25. More informa-
tion on the methodology used in this case can be find
in [13] and [14].

In the estimation stage, the use of the initial es-
timates of the model parameters of the value of 0.1
leads to good results in most cases; better initial esti-
mates for model parameters can be obtained based on
the autocorrelation and partial autocorrelation func-

tions, used to determine the structure of the model.
In this stage as model parameters will be retain those
for which |t| ≥ 2, [13]. The criteria Akaike Infor-
mation Criterion (AIC), Bayesian information crite-
rion (BIC) or Schwarz information criterion (also SIC,
SBC, SBIC), [15], Adjusted Root Mean Square Error
(ARMSE) and Absolute Mean Percent Error (AMPE),
[13], offer information on the parameter estimation
quality.

Forecasting is what the whole procedure is de-
signed to accomplish. Once the model has been se-
lected, estimated and checked, it is usually a straight
forward task to compute forecasts. The forecasting
problem can be solved, in the most direct way, us-
ing the multiplicativeARIMA model of the form (1).
The description of the model by an infinitely weighted
sum of current values and the earlier noise is prov-
ing useful, in particular, to estimate the variance of
forecasting values, as well as to determine their con-
fidence intervals. Standards and practices for time se-
ries forecasting are given in [16].

4 Case Study - Forecasting Impact of
Air Quality on Mortality Rates

The time series making the object of the case study
represents the mortality rate (number of deaths per
10000 people), of a region in England, function of
the ozone, daily average computed for the region, O3,
particulate matter 10 micrometers or less in diame-
ter, daily average, PM10, and temperature mean, daily
average, in Kelvin degree, T2M, considered aa risk
factors, and are provided in a Kaggle competition,
[9]; the air quality data used in this competition is
freely available from Copernicus Atmosphere Mon-
itoring Service (CAMS) which is managed by Eu-
ropean Centre for Medium Range Weather Forecasts
(ECMWF).

The data containing each 364 values are graphi-
cally presented in Fig. 1, Fig. 2, Fig. 3 and Fig. 4,
respectively.

After preliminary analysis of the data and differ-
ent model structures resulted a transfer model func-
tion, with 3 exogenous variables: O3, PM10 and
TempK, and Mort as output, of the form:

Mortt =
ω1,1 + ω1,2B

1 + δ1,1B + δ1,2B2 + δ1,3B3
O3t +

+
ω2,1 + ω2,2B

1 + δ2,1B + δ2,2B2 + δ2,3B3
PM10t +

+
ω3,1 + ω3,2B

1 + δ3,1B + δ3,2B2 + δ3,3B3
T2Mt +
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Figure 3: Ozone, daily average computed for the re-
gion, O3.
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Figure 4: Particulate matter 10 micrometers or less in
diameter, daily average, PM10.
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Figure 5: Temperature mean, daily average, in Kelvin
degree, T2M.
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Figure 6: Mortality rate (number of deaths per 10000
people), Mort

+
1 + θ1B

1 + φ1B + φ2B2
at; v[at] = σ2. (2)

with s = 1, due to the nostationarity of the data.
For the model parameters and variance,σ2, have been
used as initial values 0.1. It was used implicit values
for the optimization algorithm, excepting the maxi-
mum number of iteration, chosen 500. The following
final values have been obtained for model parameters
(see TABLE I):

Table 1: Final transfer function model parameters
Parameter Estimate Std. Dev.

φ1 -1.0906 0.0002
φ2 0.0906 0.0000
θ1 -0.8683 0.0005

ω1,1 0.0055 0.0001
w1,2 0.0001 0.0003
ω2,1 -0.0057 0.0001
ω2,2 0.0071 0.0001
ω3,1 0.0092 0.0001
ω3,2 -0.0097 0.0001
δ1,1 0.0311 0.0003
δ1,2 -0.1780 0.0005
δ1,3 -0.1007 0.0005
d2,1 -1.5533 0.0004
δ2,2 1.5105 0.0004
δ2,3 -0.7825 0.0005
δ3,1 -0.8450 0.0005
δ3,2 0.3524 0.0005
δ3,3 0.1559 0.0005
v1,1 0.1049 0.0004

with the objective function: 81.8254, nr. of iterations:
14, and information criteria: AIC = 0.5540 and SBC
= 0.7574.
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The model residuals are presented in Fig. 4, and
the autocorrelation functionfac partial autoccorela-
tion functionpacf are given in Fig. 5. The confirm
the model validation.
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Figure 7: Model residuals
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Figure 8: Residuals autocorrelation function,fac, and
partial autoccorelation function,pacf

The forecasting values for mortality and confi-
dence interval 95%, for a horizon of 14 days are
graphical presented in Fig. 6; the numerical values
are given in TABLE II.

5 Conclusions

The time series analysis of road traffic accidents us-
ing multiplicative ARIMA models and the attrac-
tive features of the Box-Jenkins approach provide an
adequate description to the data in this field. The
ARIMA processes are a very rich class of possible
models and it is usually possible to find a process
which provides an adequate description to the data.
Monthly pattern was the best time process for fore-
casting. Also, the intervention analysis proved to be
a useful approach to model interrupted time series, in
this case, when such time series are generated as the
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Figure 9: Forecasting values for mortality and con-
fidence interval 95%, for a horizon of 14 days; only
the the last 64 values of the original time series and
forecasting results are presented.

Table 2: Forecasting values and confidence limits
95%.

Forecasting Inf. Lim. Forecasting Upp. Lim.
horizon 95% Value 95%

1 1.0363 1.6711 2.3059
2 0.9962 1.6465 2.2968
3 0.9985 1.6559 2.3133
4 1.0768 1.7407 2.4046
5 1.2021 1.8723 2.5425
6 1.2639 1.9404 2.6169
7 1.2501 1.9328 2.6155
8 1.1887 1.8776 2.5665
9 1.2109 1.9059 2.6009
10 1.3118 2.0128 2.7139
11 1.3238 2.0308 2.7379
12 1.1614 1.8743 2.5873
13 0.9784 1.6973 2.4162
14 1.0235 1.7482 2.4729
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of training drivers to obey traffic laws such as using of
the seat belt, some economical constraints, etc. The
case studies presented in the paper proved the effi-
ciency of the approach. Although originally designed
for modeling time series withARIMA processes, the
underlying strategy of Box and Jenkins is applicable
to a wide variety of statistical modeling situations. It
provides a convenient framework which allows an an-
alyst to think about the data, and to find an appropriate
statistical model which can be used to help answer rel-
evant questions about the data.
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